If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 44x + -121 = 0 Reorder the terms: -121 + 44x + 3x2 = 0 Solving -121 + 44x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -40.33333333 + 14.66666667x + x2 = 0 Move the constant term to the right: Add '40.33333333' to each side of the equation. -40.33333333 + 14.66666667x + 40.33333333 + x2 = 0 + 40.33333333 Reorder the terms: -40.33333333 + 40.33333333 + 14.66666667x + x2 = 0 + 40.33333333 Combine like terms: -40.33333333 + 40.33333333 = 0.00000000 0.00000000 + 14.66666667x + x2 = 0 + 40.33333333 14.66666667x + x2 = 0 + 40.33333333 Combine like terms: 0 + 40.33333333 = 40.33333333 14.66666667x + x2 = 40.33333333 The x term is 14.66666667x. Take half its coefficient (7.333333335). Square it (53.77777780) and add it to both sides. Add '53.77777780' to each side of the equation. 14.66666667x + 53.77777780 + x2 = 40.33333333 + 53.77777780 Reorder the terms: 53.77777780 + 14.66666667x + x2 = 40.33333333 + 53.77777780 Combine like terms: 40.33333333 + 53.77777780 = 94.11111113 53.77777780 + 14.66666667x + x2 = 94.11111113 Factor a perfect square on the left side: (x + 7.333333335)(x + 7.333333335) = 94.11111113 Calculate the square root of the right side: 9.701088142 Break this problem into two subproblems by setting (x + 7.333333335) equal to 9.701088142 and -9.701088142.Subproblem 1
x + 7.333333335 = 9.701088142 Simplifying x + 7.333333335 = 9.701088142 Reorder the terms: 7.333333335 + x = 9.701088142 Solving 7.333333335 + x = 9.701088142 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + x = 9.701088142 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + x = 9.701088142 + -7.333333335 x = 9.701088142 + -7.333333335 Combine like terms: 9.701088142 + -7.333333335 = 2.367754807 x = 2.367754807 Simplifying x = 2.367754807Subproblem 2
x + 7.333333335 = -9.701088142 Simplifying x + 7.333333335 = -9.701088142 Reorder the terms: 7.333333335 + x = -9.701088142 Solving 7.333333335 + x = -9.701088142 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + x = -9.701088142 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + x = -9.701088142 + -7.333333335 x = -9.701088142 + -7.333333335 Combine like terms: -9.701088142 + -7.333333335 = -17.034421477 x = -17.034421477 Simplifying x = -17.034421477Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.367754807, -17.034421477}
| 0.48+0.31(x-1)+2.42=4.14 | | h(t)=16t^2-32t+24 | | 16x+12y-20x=7y | | 12x+18=4x+178 | | 6+66x=33x+24 | | x+4+7x-10=180 | | 0.48+0.31+2.42=4.14 | | 24-6x=-10x | | .2x+38=2x | | .55p=8.8 | | a=2400(1+.03)10 | | C=2*3.14*12 | | 2.9=7.4+y | | X=26t-3x | | X=26+-3x | | x-1(x+5)=2x(2x+6) | | p(x)=3x^3-12x | | 5x=+12 | | 6x+1=(4x-3) | | (X-3)+3(x-1)=20 | | 6/x=27/4 | | 2x*3xa*5= | | 13:13/x=7,5 | | 12x^4-19x-18=0 | | 1/4(x-4)=75 | | 4x+7y+2x+3y= | | 4/5=8x | | Log(2)(x^2-7x)=3 | | 12x-21=15+6x | | 8n=-1.3n | | (1.5/6,5)=(x/4-x) | | -3x^2-30x+4=0 |